—Chapter 4—

Electric Currents
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4-1 Steady Current

CURRENT DENSITY

The amount of charges passing a given point per unit time.

dQ pvdt da R
“ar T ar P

where p is the volume charge density.
Define the current density (current per unit area)

Thus, the current I flowing through any surface § is just the surface
integral

szf-da
S

If we choose the surface to be closed, Gauss's divergence theorem
permits us to express I as an integral over the enclosed volume V:

Izjif-d&:fvv-fdr

Since the charge is leaving the enclosed volume,

Y
“ar T at) P

so we have

fV ]dr———fpd‘r— J—-dr

This equation gives rise to

V- Jj+—=—=0- continuity equation
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This equation is also the precise mathematical statement of local
charge conservation.

STEADY CURRENT

Electric charge in motion is electric current. Because charge is never

created or destroyed, the charge density p and the current density f
always satisfy the continuity equation

S dp
VIE %
If p is constant in time, we have
% _osv.j=0
at /=

According to Gauss's law,

VE=Lop=ev E
€o
we have
v.J= a( V-E) = €V L
J=5\% R OV T
Thus, the electric field E is constant in time. The current driven by

this electric field is called the steady current.

Suppose that the current into the bend is greater than the current out.

I
Then charge piles up at the "knee", and this produces a field aiming
away from the kink. This field opposes the current flowing in (slowing
it down) and promotes the current flowing out (speeding it up) until
these currents are equal, at which point there is no further

in

accumulation of charge, and equilibrium is established. The current is
the same all around the circuit.

S
When the current density vector | remains constant in time
everywhere, no charge piling up occurs, i.e.,
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—p=0>V-J=0

P J

The current is steady in a wire, i.e., the magnitude of I is the same all

along the line.

EXAMPLES:
1. A wire has arbitrary shape of the cross-section A and length L. If
we stipulate that the potential is constant over each end, and the

potential difference between the ends is ¢. Show that the field
inside the wire is uniform.

ANSWER:
Within the wire, ¢ obeys Laplace's equation. The Neumann
boundary condition on the side walls are

®(0) = 0 and @(L) = @

dp

T -0

on

Thus, the potential is
©oZ

0(z) ==~

The field is

E=-Vp= —%0-2

which is equivalent to a parallel-plate capacitor whose plates are
separated by a distance L.

e

P
[P (R
I.
(P = = “ R ; - (pO
\ —
e AN
. -
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4-2 Ohm's Law and Resistance

OHM'S LAW

In most substances, and over a wide range of electric field strengths, we
find a empirical relation that the current density is proportional to the
strength of the electric field that causes it,

f = oF - Ohm's law
where o is called the electric conductivity.

Ohm's law describes the motion of charged particles that are
accelerated by an electric field but suffer energy and momentum
degrading collisions (scattering events) with other particles in a metal.
Supposed that charged particles moving through a metal are subject to

an external electric field E and collisions between nuclei. Thus, the total
momentum p of a bunch of charge carriers in some volume of a metal
is governed by the equation:

dﬁ - -
i qE + Feon

Drude assumes that electrons are like a classical ideal gas following
the Maxwell-Boltzmann distribution. Thus, when a collision happens,
the electron stops dead:

S Ap  0—mv;  miy

coll = -

where T is thg time bel‘-cween colligions and called the relaxation time.
Uy is called the drift velocity.
Thus, we obtain
dﬁ - m'l-}d
aF
For a steady current, i.e., dp/dt = 0, we obtain
- mvg qt - .

where u = qt/m is called the mobility.

(3) The current density
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where L = UAt.

According to Drude's theory and Ohm's law, we have

- = = qr _ pqrt . .
J=puE=0cE=>0=pu=p—=——" electrical conductivity
m m
EXAMPLES:

1. The electron density in copper is n = 8.5 X 1028m™~3. The
relaxation time is 7~2.5 X 10™*s. Find the electric conductivity
of copper.

ANSWER:

Consider the number density n of electrons,
p = —ne

then we have

_ 85x10%8m™ x (1.602 x 10719C)” x 2.5 x 10~ 1s
- 9.109 x~31 kg

=6 x107(Qm)’?

2. The density of copper is 8.935g/cm3. The electron mobility in
copper at room temperature is g = 4.4 x 1073 m?/Vs. Find the
number of free electrons per copper atom.

ANSWER:
The expression for the electrical conductivity of a metal,
according to Drude model is as shown below:
0 = pU=mneu

o 6 x 107 (Qm)!

= = — =
" el T 1602 x 10-19C x 4.4 x 10~3 m2/Vs

The number of copper atom in a cubic meter is

=8.5%10%®m™3
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6
8.935 X %kg/m3 x 103 g/kg
N, =
cu 63.55 (atomic Weight)

_ 8935000 X 6.023 x 1023
~ 63.55 '

= 8.46 x 1028

X N,

The number of free electrons in each copper atom is
n 8.5 x 1028

— =—————=1
Ncy, 8.46 x10%8 0
RESISTANCE
Consider a piece of homogeneous material of conductivity o and length

L, and uniform cross-section A.

Within the conducting material,

J =oE
Since the field inside the wire is uniform, the potential difference V
between two ends is

V =EL
The total current is
I= f J-dd=JA

Thus, we obtain

—I— v V= L 1 Ohm's 1
]_Z_o'—:) ol b m's law

L
We then define the resistance
L L
oA Py

where pg is called the resistivity.
As long as our conductors are surrounded by a nonconducting medium

(air, oil, vacuum, etc.), the resistance R between the terminals doesn't
depend on the shape, only on the length of the conductor and its cross-
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sectional area.

Nonconducting
environment

EXAMPLES:
1. Two long coaxial metal cylinders (radii a and b) are separated by
material of conductivity o. If they are maintained at a potential
difference V, what current flows from one to the other, in a length

L7
te

a

ANSWER:

The field between the cylinders is
o A

A

2megr
where A is the charge per unit length on the inner cylinder. The

current is therefore
5> . . A o
I=f]-da=ajE-da=a —-2nrLl = — AL
2megr €o
Meanwhile, the potential difference between the cylinders is

V= be 45 =2 In2 = 1 = 220
o, 5= 2me, "a "~ Inb/a

so we have

o 2meg VL = 2mol Vo R= 2nol
"€ lnb/a ~ Inb/a " Inb/a
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4-3 RC Circuit

A. ELECTROMOTIVE FORCE

(1) Circuit
\W\ /7y

The flow of current in a resistor involves the dissipation of energy.
Suppose a steady current I, in amperes, flows through a resistor of R.
The rate at which work is done (that is, the power) is therefore

P =1I°R

(2) Naturally the steady flow of current in a dc circuit requires some
source of energy capable of maintaining the electric field that drives
the charge carriers. A battery (source of energy) generates an electric
potential difference or a voltage (Voltage V and potential difference are
the same. Voltage is a word that is often used in practice).

o R
k - AN
N
Bulb
q vV
Electric field drives Current
Batt the charges
attery // TI
_|e® <~ @8, E

s —100 < 00 |
<« 1
Electrons L Ll +

For historical reasons, we say that these sources of electrical energy
(battery) impress an electromotive force (EMF) on the system.
OS:

The term electromotive force was coined by Italian physicist and
chemist Alessandro Volta, who invented the electric battery in
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1800.
EMF is the energy supplied to the charge.

EMF maintains the potential difference or voltage between two
electrodes. When no current is drawn from the battery, the voltage &€

between the electrodes of the source is called its electromotive force.
R

MWV

q 4
l
£
L e—
T +

Since in practice the potential difference V will drop only a little below
the value &, r plays the role of an effective "internal resistance" which
accounts for loss mechanisms within the source itself, i.e.,

E-Ir=V

EXAMPLES:
1. A circuit contains two batteries without internal resistance with
electromotive force £; and &,, respectively. What are the currents

in this network?

I I
—_— A —_—

Ry
2
R L{_, & =y
B
ANSWER:
11 - 12 - 13 = O

61 - R111 - R313 = 0
82 + R3I3 - Rzlz = 0
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Thus, we obtain
&R+ ER3 + &Ry

Y7 RR, + RyRs + RiR4

27 RyR, + RyR; + R,R,
E1R; — &Ry

I, =
3 7 R,R, + RyR; + R,R,

B. RC CIRCUIT

(1) An RC circuit is a circuit containing resistance and capacitance.

The Kirchhoff loop equation for the series RC circuit and the dc
current is

q

E=—+RI
=+

Since
_4dq
T dt

we have

- =
C dt dt _RC RC
This differential equation can be integrated to find an equation for the

charge on the capacitor as a function of time.

dq dt
CE—q
e d
. fdt
0 CE—q ~RC
CE-Q ¢t
—In(CE - q)| _ln_C_S__R_é
CE=Q_ e
cE

Let Qo = CE. We have
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Q(t) = Cg(l — e—t/RC) — Qo(l _ e—t/RC)
)

[ —

<— RC —=i
The quantity RC that appears in the exponent is called the time

constant of the circuit.

(2) The current through the resistor can be found by taking the time
derivative of the charge.

dQ QO t g
<X _ X0 —t/RCc _ Z ,-t/RC _ —t/RC
I i~ RC e R e Iye

I
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4-4 Electrostatic Energy

ENERGY STORED IN THE ELECTRIC FIELD

In a simple RC circuit, the power supplied by the battery is

Q
IE=1?R+1%
C

The first term is the power dissipated as heat. The second term is the

rate of increase of the electric energy.

Thus, if U is the stored electric energy,

dU—IQ—1 dQ _ dV:dU—l dQ = Ccvav
a-'cTc%a Y% =cede=
Clearly, U = 0 when Q = 0, then

U—de—lf d _ 1t 2—1CV2
B T C QQ_ZCQ 2

It takes work to charge up a capacitor

wW=U= ! cv?
2
The electric energy W expressed in terms of V and p.
dw Q dQ
_— I— = I = —_—
dt C r=v dt
Since
Q=|pdr
v
we have

dQ d ap
V—'=——fV,DdT= V—drt
dt dt), y ot
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d
dtfdeT f —-dT+f—-VdT

V___
Similarly, we can obtain
VL= [ 52
dat ac), T ‘
Thus, we get
d
dtfdeT—f —-dT+f—VdT
=05t =Vt
Since
1,40 _ dv_ do _ v
e w” w T %
we have
d_[ Vd —ZJ an :>f an —1d_[ Vd
atc )L T P T )P T T zac J PN

Thus, we obtain

dw 1d

1
= | pvdrsw==|pvd
dt 2dt,[vp ‘ zfvp !

The energy expressed in terms of E.
Using Gauss's law, we have

W—lf vd —1f (v E)Vd
—va T—Zveo T

Since

—

v-(Bv)=(vV-E)V+E-
thus, we have

€o
=2 v.
Z'f’]]
_%f
=2\
€ - -
=—°j€ V-da +fE Edr
2 |Js v

€
=?° fEV da+fE2dr]

Since at large distances from the charge, E goes like 1/r% and V like

\%%

dr—Jﬁ-VVdT]
1%

V-dd fE-VVdT]
v
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1/r, while the surface area grows like r2; then, the surface integral
goes down like 1/r. Thus, we obtain

_ o 2 _l 2
W = > E dT—ZCV
EXAMPLES:

1. Find the energy of a uniformly charged spherical shell of total
charge q and radius R.

ANSWER:
e Method I:
1 1( qo 1 g q>
W =-— Vd = — ———d = — =
zja T2 ) 4meR“ T 24me,R 1 T Bre R
e Method II:
€
W = 7" J E2dr
€ q z
=20 [—— ) y25;
> <4—7‘[€0T2> r<sin@ drdfdg¢

€of 4 e " 2n
=—|— —dr | sin6d@ do
2 \4mey) Jp 2 ), 0

2. Find the energy required to assemble a uniform sphere of charge
of radius b and volume charge density p.

ANSWER:
e Method I:
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47‘[60R
q qp
dW =Vdq = —— p4nR*dR = — RdR
g 47T60Rp n €o
Since
— 4 R3
q= 3 TR™p
we have

4 41
aw = L2 2R3 pRdR = 25 p2R*dR
3 3€q

€o
The total work required to assemble a uniform sphere of charge is
41
W= |dw=| — =——p?b5
f f 360 p 1560
Method II:
1 p(? )
W=—fdeT=—j V4nR* dR
2 2J),
Since
qa_ . _ pb°
= ) R=b
7 _ | ameoR " T 3e,R2
B R
;=P 0<r<b

r )
471€yR? 3¢
Consequently, we obtain

3¢g\b o 2 ' 2
p
=—(3b% —R?
se. ( )
Thus, we get
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p(’p
w=5| £ (3b2—R?)4nR?dR
zfo e, Jam

_E)_Z b 2p2 _ p4
_BEOL(SbR R*)dR
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